410 research outputs found

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Characterisation of the dip-bump structure observed in proton-proton elastic scattering at root s=8 TeV

    Get PDF
    The TOTEM collaboration at the CERN LHC has measured the differential cross-section of elastic proton-proton scattering at root s = 8 TeV in the squared four-momentum transfer range 0.2 GeV2 < vertical bar t vertical bar < 1.9 GeV2. This interval includes the structure with a diffractive minimum ("dip") and a secondary maximum ("bump") that has also been observed at all other LHC energies, where measurements were made. A detailed characterisation of this structure for root s = 8 TeV yields the positions, vertical bar t vertical bar(dip) = (0.521 +/- 0.007) GeV2 and vertical bar t vertical bar(bump) = (0.695 +/- 0.026) GeV2, as well as the cross-section values, d sigma/dt vertical bar(dip) = (15.1 +/- 2.5) mu b/GeV2 and d sigma/dt vertical bar(bump) = (29.7 +/- 1.8) mu b/Ge-2, for the dip and the bump, respectively

    Elastic differential cross-section dσ/dt{\rm d}\sigma/{\rm d}t at s=\sqrt{s}=2.76 TeV and implications on the existence of a colourless 3-gluon bound state

    Full text link
    The proton-proton elastic differential cross section dσ/dt{\rm d}\sigma/{\rm d}t has been measured by the TOTEM experiment at s=2.76\sqrt{s}=2.76 TeV energy with β=11\beta^{*}=11 m beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed to measure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer (t|t|) from 0.360.36 GeV2^{2} to 0.740.74 GeV2^{2}. The differential cross-section can be described with an exponential in the t|t|-range between 0.360.36 GeV2^{2} and 0.540.54 GeV2^{2}, followed by a diffractive minimum (dip) at tdip=0.61±0.03|t_{\rm dip}| = 0.61 \pm 0.03 GeV2^{2} and a subsequent maximum (bump). The ratio of the dσ/dt{\rm d}\sigma/{\rm d}t at the bump and at the dip is 1.7±0.21.7\pm 0.2. When compared to the ppˉ\rm p\bar{p} measurement of the D0 experiment at s=1.96\sqrt s = 1.96 TeV, a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for a colourless 3-gluon bound state exchange in the tt-channel of the proton-proton elastic scattering.Comment: 75 authors, 17 pages, 10 figures, 3 table

    Characterisation of the dip-bump structure observed in proton-proton elastic scattering at root s=8 TeV

    Get PDF
    The TOTEM collaboration at the CERN LHC has measured the differential cross-section of elastic proton-proton scattering at root s = 8 TeV in the squared four-momentum transfer range 0.2 GeV2 < vertical bar t vertical bar < 1.9 GeV2. This interval includes the structure with a diffractive minimum ("dip") and a secondary maximum ("bump") that has also been observed at all other LHC energies, where measurements were made. A detailed characterisation of this structure for root s = 8 TeV yields the positions, vertical bar t vertical bar(dip) = (0.521 +/- 0.007) GeV2 and vertical bar t vertical bar(bump) = (0.695 +/- 0.026) GeV2, as well as the cross-section values, d sigma/dt vertical bar(dip) = (15.1 +/- 2.5) mu b/GeV2 and d sigma/dt vertical bar(bump) = (29.7 +/- 1.8) mu b/Ge-2, for the dip and the bump, respectively

    Elastic differential cross-section measurement at root s=13 TeV by TOTEM

    Get PDF
    The TOTEM collaboration has measured the velastic proton-proton differential cross section d sigma/dt at root s = 13 TeV LHC energy using dedicated beta* = 90 m beam optics. The Roman Pot detectors were inserted to 10s distance from the LHC beam, which allowed the measurement of the range [0.04 GeV2; 4 GeV2] in four-momentum transfer squared vertical bar t vertical bar. The efficient data acquisition allowed to collect about 10(9) elastic events to precisely measure the differential cross-section including the diffractive minimum (dip), the subsequent maximum (bump) and the large-vertical bar t vertical bar tail. The average nuclear slope has been found to be B = (20.40 +/- 0.002(stat) +/- 0.01(syst)) GeV-2 in the vertical bar t vertical bar-range 0.04-0.2 GeV2. The dip position is vertical bar t(dip)vertical bar = (0.47 +/- 0.004(stat)+/- 0.01(syst)) GeV2. The differential cross section ratio at the bump vs. at the dip R = 1.77 +/- 0.01(stat) has been measured with high precision. The series of TOTEM elastic pp measurements show that the dip is a permanent feature of the pp differential cross-section at the TeV scale.Peer reviewe

    Elastic differential cross-section dσ/dt at s√=2.76 TeV and implications on the existence of a colourless C-odd three-gluon compound state

    Get PDF
    The proton–proton elastic differential cross section dσ/dt has been measured by the TOTEM experiment at s√=2.76 TeV energy with β∗=11 m beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed to measure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer (|t|) from 0.36 to 0.74 GeV2. The differential cross-section can be described with an exponential in the |t|-range between 0.36 and 0.54 GeV2, followed by a diffractive minimum (dip) at |tdip|=(0.61±0.03) GeV2 and a subsequent maximum (bump). The ratio of the dσ/dt at the bump and at the dip is 1.7±0.2. When compared to the proton–antiproton measurement of the D0 experiment at s√=1.96 TeV, a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for the exchange of a colourless C-odd three-gluon compound state in the t-channel of the proton–proton and proton–antiproton elastic scattering

    Elastic differential cross-section d sigma/dt at root s=2.76 TeV and implications on the existence of a colourless C-odd three-gluon compound state

    Get PDF
    The proton-proton elastic differential cross sectvion d sigma/dt has been measured by the TOTEM experiment at root s = 2.76 TeV energy with beta* = 11 m beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed tomeasure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer (vertical bar t vertical bar) from 0.36 to 0.74 GeV2. The differential cross-section can be described with an exponential in the vertical bar t vertical bar-range between 0.36 and 0.54 GeV2, followed by a diffractive minimum (dip) at vertical bar t(dip)vertical bar = (0.61 +/- 0.03) GeV2 and a subsequent maximum (bump). The ratio of the ds/dt at the bump and at the dip is 1.7 +/- 0.2. When compared to proton-antiproton measurement of the D0 experiment at root s = 1.96 TeV, a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for the exchange of a colourless C-odd three-gluon compound state in the t-channel of the proton-proton and proton-antiproton elastic scattering.Peer reviewe
    corecore